Design and Development of a Three-Component Force Sensor for Milling Process Monitoring

نویسندگان

  • Yingxue Li
  • Yulong Zhao
  • Jiyou Fei
  • Yafei Qin
  • You Zhao
  • Anjiang Cai
  • Song Gao
چکیده

A strain-type three-component table dynamometer is presented in this paper, which reduces output errors produced by cutting forces imposed on the different milling positions of a workpiece. A sensor structure with eight parallel elastic beams is proposed, and sensitive regions and Wheastone measuring circuits are also designed in consideration of eliminating the influences of the eccentric forces. To evaluate the sensor decoupling performance, both of the static calibration and dynamic milling test were implemented in different positions of the workpiece. Static experiment results indicate that the maximal deviation between the measured forces and the standard inputs is 4.58%. Milling tests demonstrate that with same machining parameters, the differences of the measured forces between different milling positions derived by the developed sensor are no larger than 6.29%. In addition, the natural frequencies of the dynamometer are kept higher than 2585.5 Hz. All the measuring results show that as a strain-type dynamometer, the developed force sensor has an improved eccentric decoupling accuracy with natural frequencies not much decreased, which owns application potential in milling process monitoring.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and analysis of a three-component piezoelectric force sensor

This paper presents a mathematical model for the vibration analysis of a three-component piezoelectric force sensor. The cubic theory of weakly nonlinear electroelasticity is applied to the model for describing the electromechanical coupling effect in the piezoelectric sensing elements which operate in thickness-shear and thickness-stretch vibration modes. Hamilton's principle is used to derive...

متن کامل

Development of a Tri-Axial Cutting Force Sensor for the Milling Process

This paper presents a three-component fixed dynamometer based on a strain gauge, which reduces output errors produced by the cutting force imposed on different milling positions of the workpiece. A reformative structure of tri-layer cross beams is proposed, sensitive areas were selected, and corresponding measuring circuits were arranged to decrease the inaccuracy brought about by positional va...

متن کامل

Flexible Foot/Ankle Based on PKM with Force/Torque Sensor for Humanoid Robot

This paper describes the development of a novel humanoid robot foot/ankle based on an orientation Parallel Kinematic Mechanism for intelligent and flexible control. With three identical Universal-Prismatic-Spherical prismatic-actuated limbs and a central Universal-Revolute passive limb, the PKM can perform three degrees of freedom rotation motions. In order to enable the humanoid robot safely t...

متن کامل

Compensation of Machine Tool Spindle Error Motions in the Radial Direction for Accurate Monitoring of Cutting Forces Utilizing Sensitive Displacement Sensors

Abstract—This paper deals with the cutting force monitoring for intelligent end milling operations. The authors have employed displacement sensors to monitor the cutting forces, as they are cheap and small enough to be built in the spindle structure. A monitoring method, which utilizes sensitive displacement sensors, is discussed. The sensors are installed in X Y directions near the front beari...

متن کامل

Cutting Force Prediction in End Milling Process of AISI 304 Steel Using Solid Carbide Tools

 In the present study, an attempt has been made to experimentally investigate the effects of cutting parameters on cutting force in end milling of AISI 304 steel with solid carbide tools. Experiments were conducted based on four factors and five level central composite rotatable design. Mathematical model has been developed to predict the cutting forces in terms of cutting parameters such as he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017